
Using Programming Case Studies to Foster Computational Thinking

Arthur D. Hanna, Ph. D.

AHanna@StMaryTX.edu

St. Mary’s University, San Antonio, Texas 78228

ABSTRACT

 Computational thinking is thinking like a computer scientist, the kind of thinking

absolutely required to formulate computational solutions to algorithmic problems.

Aristotle wrote, “For things we have to learn before we can do them, we learn by doing

them.” Which begs the question: How can a student do something that the student has not

yet learned to do? Answer: Let the expert (teacher) do it with them, but provide a way for

the student to actively participate in the process. Expert show-and-tell programs do not

actively involve the student. The sink-or-swim approach, which requires the student to

write large programs from scratch with little or no expert help, does actively involve the

student, but “swimmers” are usually students who already can think computationally,

whereas “sinkers” are students who cannot.

 This paper’s answer for fostering computational thinking, the programming case

study, requires the student to fully understand the problem and to actively engage in re-

solving it by answering computational thinking questions and by supplying “missing

code” segments. A case study includes: 1) an introduction of background material

required by the student to understand the statement of the problem and its solution; 2) a

clear statement of the problem; 3) a sample of the program/user dialog to provide the

student with test data; 4) a collection of computational/critical thinking questions which

are keyed to the program listing; and 5) the program listing with code segments

strategically elided which become the student’s responsibility (aka, “missing code”).

1. INTRODUCTION

1.1 Why is Computational Thinking So Important?

 Wing (33) wrote, “Computational thinking is a fundamental skill for everyone, not

just for computer scientists. To reading, writing, and arithmetic, we should add

computational thinking to every child’s analytical ability.” So, it is not surprising to find

articles like these in the popular press, “Why your 8-year-old should be coding” (O’Dell)

and “Why You Need to Know Code” (Snow).

mailto:AHanna@StMaryTX.edu

 Wing (33) goes on to define computational thinking as “a way of solving problems,

designing systems, and understanding human behavior that draws on concepts

fundamental to computer science.” The following excerpt from the 2010 NRC report on a

workshop on computational thinking offers a little more detail

…computational thinking includes a broad range of mental tools and concepts

from computer science that help people solve problems, design systems,

understand human behavior, and engage computers to assist in automating a

wide range of intellectual processes. The elements of computational thinking are

reasonably well known, given that they include the computational concepts,

principles, methods, languages, models, and tools that are often found in the

study of computer science…Concepts from computer science such as algorithm,

process, state machine, task specification, formal correctness of solutions,

machine learning, recursion, pipelining, and optimization also find broad

applicability.

 The website for Carnegie Mellon’s Center for Computational Thinking states,

“Computational thinking is a way of solving problems, designing systems, and

understanding human behavior that draws on concepts fundamental to computer science.

Computational thinking is thinking in terms of abstractions, invariably multiple layers of

abstraction at once. Computational thinking is about the automation of these abstractions.

The automation could be an algorithm, a Turing machine, a tangible device, a software

system—or the human brain.”

 Computational thinking is the quintessential tool of the Computer Scientist.

Unfortunately, computational thinking is not natural and it must be explicitly taught.

1.2 Programming Requires Algorithmic Thinking (and More)

 The author believes programming should be required in every Computer Science

course. Why? In 1989, the “Denning Report” (Denning) makes it very clear how

fundamentally important algorithmic thinking is to Computer Science, “The discipline of

computing is the systematic study of algorithmic processes that describe and transform

information: their theory, analysis, design, efficiency, implementation, and application.

The fundamental question underlying all of computing is: What can be (efficiently)

automated?” Programming is not the only means available to the Computer Scientist for

expressing computational thought, but it is arguably the primary one. What McCracken

(2) wrote twenty years ago about how important computer programming is to the study of

Computer Science is still just as true, “Computer Science is more than programming, but a

Computer Science graduate must be able to program, at least.”

 Thankfully, at least for the more aesthetically inclined, programming is not all science

(Gries); it is art as well. Niklaus Wirth describes programming as “a constructive art.”

Frederick Brooks, famous for his description of the joys and woes of programming a

computer, aptly describes the value of the art of programming when he answers the

question, “Why is programming fun?” The analysis, design, and testing phases of

programming are artistic because each requires a great degree of creativity if done correctly.

This sense of creative artistic effort is the same sense used when describing problem solving

as a creative process in (Papert) and (Polya).

1.3 Algorithmic Thinking is a Subset of Computational Thinking

 Guzdial (26) writes that Alan Perlis “argued that programming was an exploration of

process, a topic that concerned everyone, and that the automated execution of process by

machine was going to change everything. He saw programming as a step toward

understanding a ‘theory of computation,’ which would lead to students recasting their

understanding of a wide variety of topics…in terms of computation.”

 Logical thinking, sequential thinking, procedural thinking, mathematical thinking are

all aspects of computational thinking. Computational thinking is, at least, Perlis’

“understanding…in terms of computation.” What David Harel (12) called “algorithmics”

Wing (33) generalized to “computational thinking” and called for computational thinking

to be recognized as a fundamental skill for everyone, as important an analytic ability as

reading, writing, and arithmetic.

1.4 Difference between Novice and Expert

 Armstrong (2) writes, “Psychologists use the term expert to refer to an individual who

is significantly more experienced than others in performing a particular task. However,

the difference between experts and novices cannot be reduced solely to experience (time

invested in learning how to perform tasks).” Herr (11) describes some of the most

important differences between experts and novices which should motivate pedagogy for

teaching computational thinking

1. Because of what experts already know, they recognize meaningful features and

patterns that are not noticed by novices.

2. Experts rely on accumulated experience which manifests as wisdom or intuition.

Experts are more flexible than novices because they have more strategies and

more effective strategies for performing a task. Novices’ dearth of experience

forces them to rely on formal procedures for handling a task.

3. Experts think about how they organize, represent, and interpret information.

Experts think about their thinking, they think critically, they meta-cogitate.

4. Experts have significant “chunks” of content knowledge organized around the

core, big concepts of their discipline.

5. An expert’s knowledge is not sets of isolated facts, but is “conditionalized” which

means that the expert selectively retrieves knowledge only under specific

circumstances. Experts build meaningful relations among related “chunks.” The

expert’s overt organizational scheme provides a deep understanding of the

discipline. Experts can see “the big picture” and are aware of the specific

circumstances of the task at hand. As a result, experts can integrate new

information more efficiently.

6. Experts can retrieve the important “chunks” of their knowledge with little explicit

effort. Experts practice automaticity, that is, automatic or fluent retrieval. Novices

are distracted by the cognitive processing they are obliged to remain conscious of

during their performance of a task.

1.5 Learning by Using Case Studies

 Novice computational thinkers need to learn how to think like experts to become good

computational thinkers. Linn (123) suggests that the most effective way to learn to think like

an expert is to emulate expert behavior. A novice could be apprenticed to an expert, but the

logistics of apprenticeship for learning computational thinker is unworkable. This paper’s

major premise is that an effective way to learn to emulate expert behavior is to “watch” it

happen by engaging in case study.

 Hanna (42) defines programming case study as a detailed exposition of how a specific

problem is solved by an expert in the problem’s domain. A case study emphasizes

pragmatics—the problem-specific common sense employed by an expert—and usually

assumes the reader of the case study has already been formally introduced to declarative

knowledge necessary for solving the case study’s problem. This declarative knowledge is

both the facts about the problem itself and the problem’s domain of application and also the

programming language’s syntax and semantics. As an expert analyzes a problem and

synthesizes the problem’s solution, she asks precise questions of herself which she then

attempts to answer in the most accurate, logical, and appropriate way she can. The case

study method employs case studies to demonstrate to the novice the computational thinking

experts use to solve problems. Computational and critical thinking questions attempt to

make explicit the thought process used by the domain expert. The heuristics in Polya are a

classic attempt to develop a generic collection of questions (both computational and critical

thinking questions) to aid problem solving in all domains.

 Most of the author’s students enjoy the case study approach and, more importantly, they

benefit from it. The few students who complain do so because they find that carefully

attending to the questions is hard work.

 As part of his dissertation, the author began building a collection of case studies similar

to the ones described by Clancy (1992a, 1992b) (a case study approach to teaching the

Pascal programming language); Shapiro (the collection of case studies developed to help

beginning programmers learn to program well); and the erstwhile “Literate Programming”

columns in the Communications of the ACM.

1.6 Reading Source Code

 A significant aspect of using case studies as described herein is that students are

required to read-to-understand a significant amount of the author’s source code. Reading

code for understanding has a number of benefits

1. Reading source code teaches the student to learn to read source code, a skill

necessary for work in industry. All too often the existing documentation for a

program in maintenance is faulty. As a result, source code is often the only real

source of “the truth.”

2. Reading masterful source code teaches the student good programming habits. The

author agrees with Skorkin (2), “Reading great code is just as important for a

programmer as reading great books is for a writer.”

3. Reading source code that is already part of the solution of a big problem, in lieu

of requiring the students to write all of the code themselves, allows the students to

solve more and bigger problems.

4. Requiring students to read a large amount of source code usually has the side-

effect of encouraging students to work in small code-reading groups.

2. PROGRAMMING CASE STUDY DESIGN

 A programming case study includes 1) an introduction of background material

required by the student to understand the statement of the problem and its solution; 2) a

clear statement of the problem; 3) a sample of the program/user dialog to provide the

student with test data; 4) a collection of computational thinking questions which are

keyed to the program listing; and 5) the program listing with code segments strategically

elided which become the student’s responsibility (aka, “missing code”).

 Advice Create a single Word document which contains your complete case study

1. Introduction

2. Problem Statement

3. Sample Program Dialog

4. Computational/Critical Thinking Questions

5. Code (all of the source code, but with strategic code segments deleted, of course)

 Use a portrait-oriented single section with your favorite variable-width, easy-to-read

font (like Times Roman) for parts 1, 2, and 4, but use a fixed-width font (like Courier

New) for the Sample Program Dialog. For the sake of readability, it is convenient to use a

separate landscape-oriented section with line numbers and a fixed-width font for the

Code.

 Because all of the code is included in the case study’s Word document, it is very easy

to refer to the code in the Computational/Critical Thinking questions. Simple copy-and-

paste operations from the Word document into the IDE the students use suffices to create

the program’s source files.

 The author makes the case study document available in electronic form by posting it

in the content portion of the course management software his university uses. Sometimes

it is helpful to briefly survey the case study for the students on the day it is posted, but

presenting details without giving students time to prepare usually proves to be fruitless.

Require students to prepare the case study—read it and jot down questions about what

they do not understand—so that the case study can be formally presented during the next

class meeting. Your formal presentation should be students-ask-questions/teacher-

provides-answer and should engender some discussion of the particulars. Sometimes a

quiz addressing a few strategically chosen computational and critical thinking questions

serves to provoke student questions.

2.1 Picking a Problem to Solve

 In her concluding paragraphs, Wing (33) advised, “Intellectually challenging and

engaging scientific problems remain to be understood and solved. The problem domain

and solution domain are limited only by our own curiosity and creativity.”

 One of the author’s favorite lines is, “Inside the chest of every serious Computer

Scientist beats the heart of a Mathematician!” There is a significant overlap between

computational thinking and mathematical thinking. Wing (35) agrees when she writes,

“Computer science inherently draws on mathematical thinking, given that, like all

sciences, its formal foundations rest on mathematics.” The author’s Mathematics

professor friends decry the shrinking mathematical thinking skills of university

undergraduates in recent years. A problem chosen for a case study can easily be made to

include a few mathematical concepts, so the computational and critical thinking questions

can be opportunities to learn those concepts.

 Advice Your problem can come from almost anywhere: the course text book, your

research areas and those of his peers, SIGCSE Nifty Assignments, puzzles and games

from newspapers, magazines, and books, simulation of “interesting” things or processes,

programming contests, et cetera.

 What is important, of course, is to find a problem that the students can “buy into.” If a

problem is too difficult, then the students will be too dependent on the professor’s

contribution to solving the problem. Try to find a problem that is on the frontier of the

students’ abilities thereby ensuring that the students are required to stretch to understand

the professor’s contribution to the solution and to develop their part of solution.

2.2 Solving the Problem

 The author credits the development of his expertise over the past thirty years to his

penchant for problem solving. New problems are very exciting to work on. Being

required to learn a new language feature or to learn an entirely new programming

language or to work in an entirely new problem domain or solve a problem to help a peer

do research is a joy.

 Advice Watch what you do as you solve the problem so that you notice both what and

how you do your problem-solving. It is very easy to forget how difficult certain aspects

of the solution were to develop and it is difficult to remember the subtleties of the

problem-solving you have accomplished. Waiting until after you have finished problem-

solving allows the questions you have asked yourself and the insights you have gained—

the questions you want your students ask and the insights you want your students to

gain—to be lost.

 The student audience is the most important consideration in how you solve the

problem. Ask yourself, “What do I want to teach? To which audience?” Novice

programmers tend to be more focused on particulars of the programming language and

the IDE being used, while more experienced programmers should be more interested in

software architecture, data modeling, and algorithmic design (elements of computational

thinking). So, with the student audience in mind, you should take note of

1. the questions you ask of yourself

2. the mistakes that you make (and their consequences), the starts and stops, and the

mistakes that you avoid (Niels Bohr defined an expert as “a person who has made

all the mistakes that can be made in a very narrow field!”)

3. the major decisions that you make during the problem-solving process

4. the tradeoffs you make

5. the simplifications and/or generalizations you are forced to make

6. the research you are required to do to fully understand the problem’s functional

requirements and the solution’s non-functional requirements (programming

language, run-time support, time complexity, et cetera)

7. how you can “play” with aspects of the programming language syntax and

semantics to allow you to demonstrate some of the variety of ways to express

parts of the solution

 Above all, enjoy yourself. Another of the author’s favorite lines is, “If you’re not

having a good time, then you must not be doing it right!” You are asking your students to

participate vicariously with you as collectively you problem-solve your way toward a

solution to the problem. If you, the master problem solver, cannot be passionate about the

problem when you present it to the students, what makes you think that they will be

passionate about it?

2.3 Writing the Introduction

 A programming case study introduction is not always necessary. Some problems are

so simply stated and easily solved that an introduction is superfluous, but it is very

important to remember the knowledge and skills of the student audience.

 Advice Ask yourself, “Can I remember how and when I came to understand what this

case study is focused on? What do my students need to know to be able to understand the

problem’s domain, the description of the problem, and the code that I wrote to solve the

problem?” For example, if the problem requires knowledge of combinatorial objects

(permutations, combinations, and subsets), then ensure the student audience is

comfortable enough with them to begin the case study. If the case study is coordinated

with topics in the text book you are using for class, clearly there is no compelling reason

for you to repeat what the student can easily find in their text book.

2.4 Writing the Description of the Problem

 Inventor and engineer Charles F. Kettering once quipped, “A problem well stated

is a problem half solved.” The statement of the problem should be long on

description but very short on design.

 Advice If your description seems excessively long, your introduction may be too

sparse and/or you may be including too much solution in your problem statement.

 As a general rule, case study problems should not be “canned” problems. It

sounds a little unfair and perhaps a little counterintuitive, but the author believes it is

good to leave the student with some questions about the problem. Real-world

problems are usually not fully described at the onset. Telling all obscures the very

natural repeating of analysis-to-requirements-to-design process that occurs when

solving most big-enough, interesting problems. Students should be led to an

understanding of the problem (see Section 2.6 below), not spoon fed all of its

particulars. Requiring the students to incrementally come to understand the problem

allows the students to realistically engage in the analysis and solution of the problem.

 Ask yourself, “What, exactly, did I understand about the problem when I first

encountered it? What were the key insights about the problem—not its solution, but

its definition—that I had as I progressed toward the final solution?”

2.5 Providing Samples of Program/User Dialog

 There are at least two good reasons for providing sample program/user interaction.

The sample should contain input data and corresponding output data.

1. The student gets a better sense of what the program is expected to do when she is

able to see how input data gets transformed into program output.

2. Since the student must re-create the solution by supplying missing code, it is

important for them to know when their solution is correct.

This section of the case study is more accurately titled “Expected Program Output.” when

the problem requires an answer which is unrelated to any user input.

 Advice The sample you provide is not intended to be an exhaustive collection of test

cases like those that might be found in a formal Test Plan. Students should be expected to

develop their own test case and to perform their own testing to assure correct program

execution.

 In addition to generating a small sample of “normal” input/output combinations,

consider generating anomalies (integer overflow, attempted division by zero, violation of

preconditions, et cetera) to confront the student with the interesting and important

“fringe” or boundary cases that they tend to ignore. Also, consider generating

instrumented output to provide students with insight into the dynamics of the program’s

execution.

 When the sample is primarily text input and output, include the text in the case study

document using a fixed-width font like Courier New. Include a graphic sample in the

case study document as a screenshot image.

 Sometimes a problem must process data stored in a separate file. If the file is not too

large and if the contents are text, then consider providing the entire contents of the file as

part of the case study document.

2.6 Writing the Computational/Critical Thinking Questions

 From my dictionary, “question [Latin quaerere to ask, to seek] an interrogative

sentence addressed to someone in order to get a reply.” A statement records a fact or

opinion—it supplies information—while a question seeks to obtain some missing piece

of information.

 Leeds (12) writes that there is obvious power in asking questions: questions demand

answers, stimulate thinking, provide valuable information, and get people to persuade

themselves (people are more apt to believe what they say, not what you say).

 Experts employ their expertise when problem-solving by figuring out correct or

reasonable answers to a certain body of problem-specific, domain-conditioned questions. To

learn how to problem-solve, students must learn to think accurately and reasonably about

the concepts that define the content and, because all content concepts are logically

interdependent, to think through the connections between the concepts. More simply,

students must to learn to ask questions like the experts do. The common-sense way to teach

students what kind of questions to ask is to show them the questions the expert asks herself.

 Advice Read through the case study from top to bottom—Introduction, Problem

Statement, Sample Program Dialog, and Code—and ask yourself, “What am I trying to

teach with this case study?” Also, keep in mind the notes you made when you originally

solved the problem (see 2.2 Solving the Problem). Number the questions and, to make it

easier for you and the students to establish the context for each question, ask the

questions from top to bottom of the case study document.

 Ask related questions as a separately numbered question, but preface the question with

something like “7. (Continuing 6) ...”

 When necessary to your discussion, “mark” portions of the case study in some fashion

to emphasize them. The author uses shading, especially in the Code section, à la the

prolific Deitel/Deitel father/son text book authors. It often aids the clarity of the question

when you copy the highlighted portion of the case study into the question.

 To help build student self-efficacy (Ramalingam), consider providing answers for a

few questions (especially the harder questions); however, make the student “pay” for the

answer by asking a question about the answer you provide.

 The questions you ask should plumb the student’s understanding of

1. aspects of the Introduction that need special emphasis (this is an excellent

opportunity to teach about the problem’s domain; for example, concepts from

mathematics that are required and methods needed for modeling the problem’s

data)

2. aspects of the Problem Statement (especially when the description of the problem

is purposely lacking in some important details)

3. inconsistencies and/or regularities in the Sample Program Dialog put there to

teach about the program’s dynamics

4. aspects of the solution process which do not manifest themselves

5. interesting aspects of the Code, including but not limited to

a. unfamiliar syntax and semantics of the programming language

b. the data modeling used to represent problem-domain objects and/or solution-

domain objects

c. the software architecture

d. library functions used and/or eschewed

e. justification for algorithms used and alternative algorithms considered

f. time complexity of algorithms used

g. hints for designing and coding of the missing code segments

h. justification for design and code choices made by the case study author during

her development

i. software engineering considerations (programming style, anti-debugging,

testing methods, parameterization, et cetera)

 Very often you will find yourself trying to decide whether it makes sense to ask

questions about a topic you covered in a case study earlier in the semester. You should

consider ensuring that each case study is as independent of the semester context in which

it originally created as possible. It is reasonable to repeat yourself. And remember, it

never hurts for the students to revisit concepts.

 You can learn much from the asking and answering of computational and critical

thinking questions. It is pleasantly surprisingly how often, when revisiting or revising a

programming case study, you discover how much you have learned since originally

finding and solving the problem described therein. Correspondingly, it is unpleasantly

surprising to find what a woeful job you did on your first attempt at constructing the case

study. No matter how good of a job you think you’ve done, there is usually room for

improvement. But remember, while a case study may become one of your “old friends,”

it is always a brand new acquaintance for most of your students when they meet it in your

course.

2.7 Choosing Code Segments to Be Provided by Students

 The author tells his students that his approach to selecting the code segments they then

assume responsibility to re-create is to find the spots in the code where he was having the

most “fun” during his problem-solving and then deleting them. The most “fun” code is

almost always those segments which are the most hard-fought for, code that expresses

new algorithms, or uses non-trivial data structures, or requires new-to-the-student

language features.

 Advice You should decide which code segments you want the students to re-create

before you write most of the questions about the code (2.6 Writing the

Computational/Critical Thinking Questions). Again, ask yourself, “What am I trying to

teach with this case study?”

 The author likens a student’s case study work to a person who wears two caps! When

wearing the “tool builder cap” the student’s code typically completes development of

modules that fit at the bottom of the structure chart where the utility, library-like

functionality usually fits. But, when wearing the “tool user cap” the student’s

responsibility is typically to complete modules that occur toward the top of the structure

chart where the problem-specific functionality is usually found. It’s important to decide

which “cap” you want your students to wear when working on any given case study.

 For the large problems that case studies usually solve, it may be unfair to require

beginning students to wear both “caps” at the same time. Of course, your students

eventually will be required to wear both “caps” when they work in industry, so more

mature students should be expected to do so when working on case studies in their upper-

division courses.

 As a general rule, do not require students to provide either the input or the output

modules of an IPO-architected program, unless, of course, either or both are interesting

enough to teach something new. If the main module is interesting, you may choose to

elide parts of it. Certainly, some of or all of the processing modules (depending on your

teaching intentions) are candidates for re-creation. If you do not allow students to modify

the program’s software architecture, then the students will be required to reuse module

interfaces.

 If the processing has a primary module that depends are several subordinate

modules—especially if the primary module is complex—you may consider assigning

only the subordinate modules to the students. Or you may assign a major portion of the

primary module to the students and provide all of the subordinate modules.

 Place a comment in place of the missing code segment which reads something like

this, “Student provides missing code to…” The ellipsis must provide enough detail so

that the student can combine that detail with knowledge of the problem and the answers

to related computational/critical thinking questions to develop an algorithm for the

missing code segment.

3. A PROGRAMMING CASE STUDY EXAMPLE (elided—ask author for details)

4. CONCLUSION
 Computational thinking is thinking like a Computer Scientist and is essential to

algorithmic problem solving. Unfortunately, computational thinking is not easy to teach.

Students can teach themselves to think better when shown how by an expert. The

programming case study method described in this paper is an effective way to “show”

students how experts think.

 The author’s case studies are not copyrighted and are available for reuse and adaption.

5. REFERENCES

Armstrong. Notes on the Psychology of Expertise. Web. October 1, 2013.

<http://www.unm.edu/~jka/courses/archive/expertise.html>.

Brooks, Frederick. The Mythical Man-Month: Essays on Software Engineering (3rd

edition). Addison-Wesley. 1975. Print.

Clancy, Michael and Linn, Maria. Designing Pascal Solutions: A Case Study Approach.

New York: W.H. Freeman and Company. 1992a. Print.

Clancy, Michael and Linn, Maria. Case Studies in the Classroom. SIGCSE Bulletin, 23:220-

224. 1992b. Print.

Denning, Peter, et al. Computing as a Discipline. Communications of the ACM, 32:9-23.

1989. Print.

Gries, David. The Science of Programming. New York: Springer-Verlag. 1981. Print.

Guzdial, Mark. Paving the Way for Computational Thinking. Communications of the

ACM, 51:25-27. 2007. Print.

Hanna, Arthur. Using Case Studies to Teach the C Programming Language to Novice

Programmers. PhD thesis, UT Austin. 1996. Print.

Harel, David. Algorithmics: The Spirit of Computing. Addison-Wesley. 2004. Print.

Herr, Norman. Internet resources for The Sourcebook for Teaching Science. John Wiley.

2007. Print.

Leeds, Dorothy. The 7 Powers of Questions. Berkley Publishing Group. 2000. Print.

Linn, Maria and Clancy, Michael. The Case for Case Studies of Programming Problems.

Communications of the ACM, 35:121-132. 1992. Print.

McCracken, David. Programming Languages in the Computer Science Curriculum. SIGCSE

Bulletin, 24:1-4. 1992. Print.

National Research Council. Report of a Workshop on “The Scope and Nature of

Computational Thinking.” 2010. Print.

O’Dell, J. Why your 8-year-old should be coding. VentureBeat. Web. April 12, 2013.

Papert, Seymour. Mindstorms: Children, Computers and Powerful Ideas. Basic Books, Inc.

1980. Print.

Polya, George. 1957. How to Solve It. Princeton: Princeton University Press. Print.

Ramalingam, LaBelle, and Wiedenbeck. Self-efficacy and mental models in learning to

program. SIGCSE Bulletin, 36:171-175. 2004. Print.

Shapiro, Henry. How to Program Well: A Collection of Case Studies. Richard D. Irwin, Inc.

1994. Print.

Skorkin, Alan. Why I Love Reading Other People’s Code and You Should Too. Web.

May 19, 2010. <http://www.skorks.com/2010/05/why-i-love-reading-other-peoples-code-

and-you-should-too/>.

Snow, Shane. Why You Need To Know Code. Web. July 17, 2013.

<http://www.linkedin.com/today/post/article/20130716014745-7374576-why-you-need-

to-know-code-and-how-you-can-learn-in-a-month>.

Wing, Jeannette. Computational Thinking. Communications of the ACM, 49:33-35. Print.

Wirth, Niklaus. Algorithms + Data Structures = Programs. Prentice-Hall, Inc. 1976. Print.

http://www.skorks.com/2010/05/why-i-love-reading-other-peoples-code-and-you-should-too/
http://www.skorks.com/2010/05/why-i-love-reading-other-peoples-code-and-you-should-too/
http://www.linkedin.com/today/post/article/20130716014745-7374576-why-you-need-to-know-code-and-how-you-can-learn-in-a-month
http://www.linkedin.com/today/post/article/20130716014745-7374576-why-you-need-to-know-code-and-how-you-can-learn-in-a-month

