
The Development of a Software Tool to Reduce Time Spent Identifying and
Commenting Writing Errors in Research Papers

Charles L. McDonald, Jr., Ph.D.

Texas A & M University - Texarkana
charles.mcdonald@tamut.edu
Theresa A. McDonald, Ph.D.

Texas A & M University - Texarkana
theresa.mcdonald@tamut.edu

Abstract

Two professors developed a tool that identifies and comments writing errors in
research papers. Written entirely in VBA, the tool addresses about 2,000 writing concerns
and includes a rules manager for configurations. It operates as a Word Add-in ribbon that
presents thirty buttons across three rows. The use of the buttons and the rationale for the
code that supports each button’s actions are addressed. In addition, modules and code
segments that support operations behind the scenes (e.g., statistics and Flesch and Flesch-
Kincaid scores) are discussed. The Rules Manager ribbon button opens a form to add,
edit, or delete rules, and it provides a means to set rules as active or inactive. The code
supporting the functions of the rules manager is described. This paper addresses the
methodology for development of a software tool using VBA that can assist faculty by
identifying and commenting many writing concerns in research papers.

Introduction

In 2006, two professors felt that their productivity was being suppressed by
spending too many hours commenting repetitive grammar errors in electronically
submitted research papers. These professors developed a software-based editing tool that
provided consistency and detail in commenting writing concerns to better serve their
students. The tool was named Edit Assist (McDonald C. & McDonald, T.). For several
years, the tool was used by ScanMyDocument.com to scan and comment uploaded
research papers and dissertations. During this time, the largest uploaded document was an
834-page dissertation from an English as a second language (ESL) student. After 20-
minutes of processing, the document was returned with more than 2,800 comments.
Presently, Edit Assist identifies and comments:

 About 900 Clichés, colloquial expressions, and conversational writing issues
 Misuse of conjunctive adverbs
 Overuse of common words
 Use of passive voice
 Too many words in a sentence
 Too many sentences in a paragraph
 One sentence paragraphs
 Words that are inappropriate, repeated, or not listed in the dictionary
 Inappropriate word choices for starting sentences
 Incorrect “a” and “an” usage

 Misuse of “not only...but also”, “neither...nor”
 About 540 additional grammar errors

The authors of this paper have continued to develop and enhance Edit Assist in

identifying and commenting writing errors in research papers. Much effort has been
directed to creating and modifying rules to eliminate erroneous comments that could
misdirect students’ efforts in writing papers. These comments provide feedback to the
students concerning their papers (Liu, Rios, Heilman, Gerard, & Linn). Comments are
attached to sentences or parts of sentences to demonstrate to the students the problem
area.

Findings

Edit Assist was written entirely in Microsoft’s Visual Basic for Applications

(VBA), which is fully supported in Office 2016 (Anderson). The use of VBA enables
users to scan a document without exiting Microsoft Word. The installation of Edit Assist
only requires code to be added to the Normal template (Normal.dotm) and to copy the
EAdb.mdb file to a folder. Edit Assist has operated for more than ten years on
Microsoft’s Word and Windows releases without requiring code changes for
compatibility. Concerning performance, a 1,000 word submission can usually be scanned
in less than 30 seconds. A utility is available via a ribbon button to customize comments
(button text and comment text) and manage the add, edit, delete, and activate/deactivate
rule functions without closing the document. Edit Assist addresses about 1,400 writing
concerns and includes a rules manager for configurations. It operates as a Microsoft
Word Add-Ins that presents 29 buttons across a 3-row ribbon. The use of the buttons and
the rationale for the code that supports each button’s action will be addressed. In addition,
modules and code segments that support operations behind the scenes (e.g., statistics and
Flesch and Flesch-Kincaid scores) will be discussed. The Rules Manager ribbon button
opens a form to add, edit, or delete rules, and it provides a means to activate or deactivate
rules. This paper addresses the methodology for development of a software tool using
VBA that can assist faculty by identifying and commenting many writing concerns in
research papers.

The ribbon buttons provide a means for the reviewer to highlight and comment

text using a user-defined set of comments. In addition, the reviewer may highlight text
and click the Blank Comment button to enter an unscripted comment. Below is a chart
depicting the caption and comment for each ribbon button. Note that by placing the
cursor on a ribbon button the tooltip would display the comment text.

Button Text Comment text

Blank Comment

Parallel
Construction

Parallel construction error - The members of a series must be all
nouns, all infinitives, all prepositional phrases, all gerunds, or all
clauses.

Choice of Words Questionable, inappropriate, weak choice, or order of words - needs
revision or deletion

Button Text Comment text

Grammar Errors Text contains one or more grammar issues that limit the evaluation
of content

Avoid Clichés Avoid clichés, colloquial expressions, and conversational writing

Sentence
Structure

Sentence has verb tense or structure problem - needs revision

Nebulous Content Nebulous, rambling, or confusing content - needs clarification of
meaning, focus on topic, or deletion

Personal
Scenario

Avoid reflecting scenarios or personal opinions unsupported by
references

Delete and
Revise

Delete text and revise sentence if necessary

Redundant
Content

Redundant content - addressed previously in document

Split Infinitive Avoid split infinitives - revise as needed

Punctuation Error This text contains one or more errors in punctuation (e.g., a missing
comma)

Incomplete
Sentence

This is an incomplete sentence - revise as needed

Acronym not
Defined

Acronym not properly defined (e.g., Quality of Service (QoS))

Wordy Writing Avoid wordiness or disorganized focus on topic

Choppy
Sentences

In formal writing, choppy sentences (rapid switching of topics using
short sentences) are to be avoided. Consider adding conjunctions,
clauses, subjects, and/or verbs to make your writing more intricate.

Avoid Using
Slashes

Avoid using slashes to imply word choices

Weak Writing Weak or nebulous writing makes an evaluation of content difficult

Use Lower Case Do not place words in proper case without rationale

Content Problem Inaccurate, incomplete, or misleading content - content quality may
be limited by this paper's organization

Review Stopped The professor's review stopped here. This does not imply that all
errors above or below this point were commented. Consider
contacting the Success Center for assistance in organizing content
and developing sentences.

Reference Format References contain incorrect formatting - visit the APA Style Form
Guide site at www.apastyle.org. (Perhaps links to the required
online references are missing)

Delineate this
Topic

Additional narrative needed to clarify or expand meaning of content

Citation Error In-text citations are missing or contain incorrect APA formatting

Unrelated Topic This content does not support this paper's topic

Microsoft Word’s AutoOpen sub procedure runs each time Word is started. The
AutoOpen sub calls the Build_Menus sub to build 29 buttons across a 3-row ribbon,
which is accessed via the Add-Ins tab. In addition, the Build_Menus sub can be called

manually (e.g., after modifying the menu’s content). The Build_Menus sub calls the
Load_Arrays sub that will create and load seven arrays from seven Access tables
contained in EAdb.mdb. The following code segment is used to dimension these arrays.

Dim Array_Menu(30, 2) As String ‘ Array_Menu
Dim Array_Grammar(900, 2) As String ‘ Array_Grammar
Dim Array_Adverbs(25, 2) As String ‘ Array_Adverbs
Dim Array_Overused(25, 2) As String ‘ Array_Overused
Dim Array_Clichés(900, 2) As String ‘ Array_Clichés
Dim Array_Passive(60) As String ‘ Array_Passive
Dim Array_Misc(20) As String ‘ Array_Misc

The Build_Menus sub only uses the first array, Array_Menu. It is loaded with the

ribbon’s menu items and either an associated comment or a function call. The data in this
array is used to populate the 3-row ribbon. Twenty-five of these buttons are dedicated to
assist the reviewer by placing predefined text in a comment linked to the highlighted text.
The code fragment from the Build_Menus sub used to generate the first menu ribbon is
listed below. Note that when one of these ribbon buttons is clicked, the Post_Comment
sub would be called to post the comment linked to the highlighted text.

Sub Build_Menus() ' Use to build or rebuild the menu ribbon
 Dim MyBar As CommandBar, Eye As Integer, MyButton As
 CommandBarControl
 Set MyBar = CommandBars.Item(3)
 ByPassMsgs = False
 LoadArray_Overuseds
 Set MyBar = CommandBars.Add(Name:="Edit Assist")
 MyBar.Visible = True
 MyBar.Position = msoBarFloating
 For Eye = 1 To 10
 Set MyButton = MyBar.Controls.Add(Type:=msoControlButton)
 MyButton.Style = msoButtonCaption
 MyButton.Caption = Array_Menu(Eye, 1)
 MyButton.Tag = Eye
 MyButton.TooltipText = Array_Menu(Eye, 2)
 MyButton.OnAction = "Post_Comment"
 Next Eye

The Count Comments button calls the Count_Comments sub to provide a total

comment count for the document, which has value as the newer releases of Microsoft
Word do not reveal the comment numbers. After a scan completes, the summary report
provides the total number of comments, but, additional comments are usually added
during the document review and the updated total number of comments would be needed
to update the summary report. The code for the Count_Comments sub is listed below.

Sub Count_Comments() ' Display total count of comments
 MsgBox ActiveDocument.Comments.Count
End Sub

The Delete_Comments sub provides a valuable addition. By highlighting a section of the
document or the whole document, the Delete Comments button can remove all comments
in the selected area with a single click. The code for the Delete_Comments sub is listed
below.

Sub Delete_Comments() ' Delete selected comment(s)
 Dim Eye As Integer, Kay As Integer
 Dim MyRange As Range
 Set MyRange = ActiveDocument.Range(Start:=Selection.Start,
 End:=Selection.End)
 For Kay = 1 To 5 ' to remove possible duplicates
 For Eye = MyRange.Comments.Count To 1 Step -1
 MyRange.Comments(Eye).Delete
 Next
 Next Kay
End Sub

The Rules Manager Button is a recent enhancement that opens a form depicting a

tool created for ease in adding, editing, or deleting rules. In addition, it provides a means
to activate or deactivate rules. In this application, rules may include “search text” and
content to be placed in the resulting comment box. Other rules are more subjective as
they locate and comment passive voice, sentences with more than a set number of words,
or paragraphs with more than a set number of sentences. Specifically, it provides an easy
means to manage menu items and the rules that detect grammar issues, conjunctive
adverbs, clichés, over-used words, passive voice, and miscellaneous items. A snapshot of
the rules manager viewing the Menu Items tab is provided below.

By clicking the Scan This Document button, the Start_Scan sub will call 16

additional sub procedures to process the document and comment identified concerns. The
code for the Start_Scan sub is listed below. Note that in VBA, the call statement is not
required (MSDN Microsoft, 2016).

Sub Start_Scan()
 Load_Arrays ' Loads the seven arrays
 Application.ScreenUpdating = False
 Convert_Citations ' Convert citations to text
 Cleanup_Doc ' Set Print Layout and clean

up document
 Words_Grammar_Check ' Make Word perform grammar

check
 OverUsed_Words ' Check for overuse of common

words
 Cliches ' Scan for clichés - search

is not case-sensitive
Grammar_Rules ' Scan for grammar errors

based on created rules
Conjunctive_Adverbs ' Scan for misuse of

conjunctive adverbs
In_Addition ' Scan for misuse of 'In

addition...'

 Usage_of_A ' Scan for misuse of 'a'
 Usage_of_AN ' Scan for misuse of 'an'
 Check_Paragraphs ' Check for one sentence

paragraphs, too many
sentences in paragraph

Long_Sentences_Plus ' Check for not only...but
also, neither...nor, long
sentences

Comment_Words ' Comment words that are
inappropriate, repeated, or
not listed in dictionary

 Passive_Voice ' Check for passive voice
 Summary_Report ' Generate Summary Report
 Selection.WholeStory
 Selection.ParagraphFormat.Space2 ' Double space document after

scanning
 ActiveWindow.View.ShowComments = True
 Selection.GoTo what:=wdGoToLine, which:=wdGoToAbsolute,
 Count:=1
End Sub

The Load_Arrays sub is called first to create and load seven arrays from seven

Access tables contained in EAdb.mdb. The first array, Array_Menu, is loaded with the
ribbon’s menu items and either an associated comment or a function call. The data in this
array is used to populate the 3-row ribbon. The second array, Array_Grammar, is used to
address grammar issues based on user-created rules. Presently, about 540 user-created
grammar rules have been added to the associated data table. Each row in this array is
loaded with an active yes/no indicator, a search string, and the associated comment text.
The third array, Array_Adverbs, is used to identify and comment the misuse of
conjunctive adverbs. It contains a list of conjunctive adverbs, each with an active yes/no
indicator. The fourth array, Array_Overused, contains a list of commonly overused
words, each with an active yes/no indicator. The fifth array, Array_Clichés, contains a list
of clichés that are to be avoided in formal writing, each with an active yes/no indicator.
The sixth array, Array_Passive, contains a listing of passive voice verbs and a list of
trailing strings that are indicators of passive voice. The list of trailing strings includes
active yes/no indicators. The seventh array, Array_Misc, contains a collection of
configuration options that include message text, maximum number of words in sentences,
maximum number of sentences in a paragraph, and several yes/no settings. After the
Load_Arrays sub has completed, the Start_Scan sub would continue by setting the screen
update control to false, which allows faster program execution by prohibiting the screen
from tracing through the many document scans.

The Convert_Citations sub is called to search for all citation fields and convert

them to static text. This is performed to avoid program crashes when scanning for ASCII
text across various Unicode control characters contained in citation fields. The code for
the Convert_Citations sub is listed below.

Sub Convert_Citations() ' Find all citation fields and convert
them to static text.

 Dim MyField As Field
 For Each CF In ActiveDocument.StoryRanges
 For Each MyField In CF.Fields
 If MyField.Type = wdFieldCitation Then
 MyField.Select
 WordBasic.BibliographyCitationToText
 End If
 Next
 Next
End Sub

The Cleanup_Doc sub is called to set the document for Print Layout. In addition,

it sets the balloon text to Arial 8-point font, and the comment text to Arial 10-point font.
These settings are hard-coded, but the code can be edited to suit the reviewer’s
preferences. The code for the Cleanup_Doc sub is listed below.

Sub Cleanup_Doc() ' Set document for Print Layout and clean up
document
 If ActiveWindow.View.Type <> wdPrintView Then
 PrtLayTxt = "Submit document in Print Layout" & vbCr
 ActiveWindow.View.Type = wdPrintView
 End If
 ActiveWindow.ActivePane.View.Zoom.Percentage = 100
 With ActiveDocument.Styles("Balloon Text").Font
 .Name = "Arial"
 .Size = 8
 End With
 With ActiveDocument.Styles("Comment Text").Font
 .Name = "Arial"
 .Color = wdColorBlack
 .Bold = False
 .Size = 10
 End With
End Sub

The Words_Grammar_Check sub calls Microsoft Word to scan the document for

grammar errors. Errors identified during this scan are commented when the
Comment_Words sub runs. It would seem logical to comment the errors before leaving
this sub, but it was discovered in early development that Word’s grammar check runs in
the background. Initially, when the errors were commented before leaving this procedure,
the commenting procedure would complete before Word’s grammar check completed
identifying concerns; thus, several errors were frequently left uncommented. The code for
the Words_Grammar_Check sub is listed below.

Sub Words_Grammar_Check() ' Make Word perform grammar check
 Dim MyRange As Range
 Selection.GoTo what:=wdGoToLine, which:=wdGoToAbsolute,

Count:=1
 ' Send to top of document
 Set MyRange = Selection.Range
 MyRange.WholeStory

 Application.ResetIgnoreAll
 ActiveDocument.SpellingChecked = False
 ActiveDocument.GrammarChecked = False
 With Options
 .CheckSpellingAsYouType = True
 .CheckGrammarAsYouType = True
 .SuggestSpellingCorrections = True
 .SuggestFromMainDictionaryOnly = False
 .CheckGrammarWithSpelling = True
 .ShowReadabilityStatistics = False
 .IgnoreUppercase = True
 .IgnoreMixedDigits = True
 .IgnoreInternetAndFileAddresses = True
 .AllowCombinedAuxiliaryForms = True
 .EnableMisusedWordsDictionary = True
 .AllowCompoundNounProcessing = True
 .UseGermanSpellingReform = True
 End With
 ActiveDocument.ShowGrammaticalErrors = True
 ActiveWindow.View.ShowComments = True
 Languages(wdEnglishUS).SpellingDictionaryType = wdSpelling
End Sub

The OverUsed_Words sub is called to check the document for an overuse of

common words. The document is scanned using the array containing the list of
commonly overused words. Each time a listed word is detected, a counter is incremented.
At the end of the scan, any word with a count greater than 5 and the count is greater than
the total word count divided by 100, would be identified as an overused word.
Information about overused words identified during this scan would be included when
building the Summary Report. The code for the OverUsed_Words sub is listed below.

Sub OverUsed_Words() ' Check for overused words
 If Array_Misc(16) = "True" Then
 Dim DyLog As Dialog
 Set DyLog = Dialogs(wdDialogToolsWordCount) ' Total words

in document
 DyLog.Execute
 TotWordCnt = DyLog.Words
 OverUsedText = ""
 Dim OverUsed As Integer
 Dim WordCnt As Single
 Selection.GoTo what:=wdGoToHeading, which:=wdGoToFirst
 ActiveDocument.UndoClear
 For Eye = 1 To 20
 WordCnt = 0
 Do While Selection.Find.Execute(FindText:=
 Array_Overused(Eye, 1), Forward:=True, Format:=False,
 Wrap:=wdFindStop) = True
 WordCnt = WordCnt + 1
 Loop

 Selection.GoTo what:=wdGoToHeading,
which:=wdGoToAbsolute, Count:=1

 If WordCnt > 5 And WordCnt > TotWordCnt / 100 Then
 OverUsedText = OverUsedText & "The word '" &

Array_Overused(Eye, 1) & "' was used " & WordCnt &
" times." & vbCr

 OverUsed = 1
 End If
 Next Eye
 End If
End Sub

The Cliches sub scans the document and comments the use of clichés, colloquial

expressions (slang), and conversational writing. Formal papers should be devoid of these
elements. Presently, this sub searches for about 900 word strings that may include
preceding or trailing spaces. The search is not case sensitive. When found, the located
search string is highlighted and a comment is generated. The routine cycles searching the
document for each search string. The same comment is used for all search strings, but the
comment text can be edited via the rules manager tool. The comment presently states, “In
formal writing, avoid clichés, colloquial expressions, and conversational writing.” The
code for the Cliches sub is listed below.

Sub Cliches() ' Scan for clichés - search is not case-sensitive
 Dim Eye As Integer
 Selection.WholeStory
 For Eye = 1 To 1000 ' using Array_Clichés
 ActiveDocument.UndoClear
 Selection.Find.ClearFormatting
 With Selection.Find
 .ClearFormatting
 .Text = Array_Clichés(Eye, 1)
 .Replacement.Text = ""
 .Forward = True
 .Wrap = wdFindContinue
 .Format = False
 .MatchCase = False ' Ignore case
 .MatchWholeWord = False
 .MatchWildcards = False
 .MatchSoundsLike = False
 .MatchAllWordForms = False
 End With
 Selection.WholeStory
 Do While Selection.Find.Execute(FindText:=
 Array_Cliches(Eye, 1), Forward:=True,
 Format:=False, Wrap:=wdFindStop) = True
 Selection.Comments.Add Range:=Selection.Range,
 Text:=Array_Misc(17)
 Loop
 Next Eye
 Erase Array_Clichés
End Sub

The Grammar_Rules sub scans the document using the grammar rules created by
users. Presently it searches for about 540 case sensitive search strings that may include
preceding or trailing spaces. As a grammar issue is found, the search strings is
highlighted and the associated comment text is placed in the comment. The routine cycles
searching the document for each search strings, and as they are located, a comment is
generated. The code for the Grammar_Rules sub is listed below.

Sub Grammar_Rules() ' Scan for grammar errors based on created
rules
 Dim Eye As Integer
 Selection.WholeStory
 For Eye = 1 To 900 ' using Array_Grammar
 ActiveDocument.UndoClear
 Selection.Find.ClearFormatting
 With Selection.Find
 .ClearFormatting
 .Text = Array_Grammar(Eye, 1)
 .Replacement.Text = ""
 .Forward = True
 .Wrap = wdFindContinue
 .Format = False
 .MatchCase = True ' Set True...this needs to be case
 sensitive
 .MatchWholeWord = False
 .MatchWildcards = False
 .MatchSoundsLike = False
 .MatchAllWordForms = False
 End With
 Selection.WholeStory
 Do While
Selection.Find.Execute(FindText:=Array_Grammar(Eye, 1),
Forward:=True,
 Format:=False, Wrap:=wdFindStop) = True
 Selection.Comments.Add Range:=Selection.Range,
 Text:=Array_Grammar(Eye, 2)
 Loop
 Next Eye
 Erase Array_Grammar
End Sub

The Conjunctive_Adverbs sub searches the document for any misuse of

conjunctive adverbs. When a conjunctive adverb is found, the sub looks for a preceding
semicolon followed by a space and a comma and a space trailing the conjunctive adverb.
If either of these conditions are false or if a conjunctive adverb is used to start a sentence,
this comment will be generated; ” If a conjunctive adverb (e.g., however, therefore,
hence...) is used to join sentences, it should have a semicolon in front of it and a comma
behind it. If it is not being used as a conjunctive adverb, delete it.” The code for the
Conjunctive_Adverbs sub is listed below.

Sub Conjunctive_Adverbs() ' Scan for misuse of conjunctive
adverbs
 If Array_Misc(14) = "True" Then
 Dim Eye As Integer
 Dim AC As String, BC As String
 Selection.WholeStory
 MyCharCnt = Selection.Characters.Count
 For Eye = 1 To 25
 ActiveDocument.UndoClear
 Selection.Find.ClearFormatting
 With Selection.Find
 .ClearFormatting
 .Text = Array_Adverbs(Eye, 2)
 .Replacement.Text = ""
 .Forward = True
 .Wrap = wdFindContinue
 .Format = False
 .MatchCase = False
 .MatchWholeWord = False
 .MatchWildcards = False
 .MatchSoundsLike = False
 .MatchAllWordForms = False
 End With
 Selection.WholeStory
 Do While Selection.Find.Execute(FindText:=
 Array_Adverbs(Eye, 2), Forward:=True,
 Format:=False,
 Wrap:=wdFindStop) = True
 BC = ActiveDocument.Range(Selection.Start - 2,
 Selection.Start).Text
 AC = ActiveDocument.Range(Selection.End,
 Selection.End
 + 2).Text
 If BC <> "; " Or AC <> ", " Then
 Selection.Comments.Add
 Range:=Selection.Range, Text:=Array_Misc(15)
 Loop
 Next Eye
 Erase Array_Adverbs
 End If
End Sub

The In_Addition sub searches the document for the misuse of “In addition”. If “In

addition” is used to start a sentence this rule will generate a comment if the search text
does not have a trailing comma and a space or a space and the word “to” followed by a
space. The comment states, “If 'In addition' is used to start a sentence, it must be followed
either by a comma or the word 'to'.” The code for the In_Addition sub is listed below.

Sub In_Addition() ' Scan for misuse of 'In addition...'
 Dim AC As String, BC As String
 Do While Selection.Find.Execute(FindText:="In addition",
 Forward:=True, Format:=False, Wrap:=wdFindStop) = True

 AC = ActiveDocument.Range(Selection.End, Selection.End +
 2).Text
 BC = ActiveDocument.Range(Selection.End, Selection.End +
 3).Text
 If AC <> ", " And BC <> " to" Then Selection.Comments.Add
 Range:=Selection.Range, Text:="If 'In addition' is used
 to start a sentence, it must be followed either by a
 comma or the word 'to'"
 Loop
 ActiveDocument.UndoClear
End Sub

The Usage_of_A sub and the Usage_of_AN sub search for the misuse use of “a”

or the misuse use of “an”. Initially, it was thought these would be easy rules to create as
“an” usually precedes a vowel, but the exceptions made the rules complicated. As an
example “a house…an hour”, or “an uncle…a unit”. These are the longest rules
representing about two pages of code and, occasionally, a condition is discovered that
requires an update. The code for the Usage_of_A and Usage_of_AN subs search for “ a ”
or “ an “ and captures the trailing 14 characters in each instance. A select case statement
with a series of cases are used in each sub to determine if “a” or “an” was properly used.
The comment would be either “Replace 'a' with 'an'” or “Replace 'an' with 'a'”.

The Check_Paragraphs sub checks for two conditions. It searches for one-

sentence paragraphs or too many sentences in a paragraph. If a one-sentence paragraph is
found, the paragraph is highlighted and a comment is generated that states,” This appears
to be a one-sentence paragraph.” The maximum number of sentences in a paragraph can
be easily set using the rules manager. Presently, if a paragraph contains more than 15
sentences, the first word of the paragraph is highlighted and a comment is generated that
states, “Long paragraphs frequently contain wordy writing, choppy sentences, redundant
content, or a mix of topics.” The rules for one-sentence paragraphs and a paragraph with
too many sentences can each be set as active or inactive. The code for the
Check_Paragraphs sub is listed below.

Sub Check_Paragraphs() ' Check for one sentence paragraphs, too
many sentences in paragraph
 Dim NumSent As Long, MyWord As String
 Dim NewRange As Range, MySlash As String, MiniRange As Range,
 MyPos As Integer, MyChar As String
 Set MyRange = Selection.Range
 MyRange.WholeStory
 ParagCnt = MyRange.Paragraphs.Count
 NumSent = MyRange.Sentences.Count
 Dim aPara As Paragraph, SentCnt As Integer
 Dim aSent As Object, aWord As Object, bWord As String
 Dim WordCnt As Integer
 For Each aPara In MyRange.Paragraphs
 ActiveDocument.UndoClear
 SentCnt = 0
 For Each aSent In aPara.Range.Sentences ' counting sentences
 in each paragraph

 SentCnt = SentCnt + 1
 Next
 Set NewRange = aPara.Range
 If Array_Misc(7) = "True" Then ' Check for long
 paragraphs
 If SentCnt > Array_Misc(8) Then ' Check for too many
 sentences in a paragraph
 NewRange.Comments.Add Range:=NewRange,
 Text:="This paragraph contains more than " &
 Array_Misc(8) & " sentences"
 End If
 End If
 If Array_Misc(5) = "True" Then ' Check for one-sentence
 paragraphs
 WordCnt = NewRange.Words.Count ' Not an accurate
 count
 If NewRange > " " And SentCnt < 2 And WordCnt > 10
 Then
 If InStr(NewRange, ":/") = 0 And InStr(NewRange,
 "=")=0 Then ' one sentence paragraphs
 NewRange.Comments.Add Range:=NewRange,
 Text:=Array_Misc(6)
 End If
 End If
 End If
 Next
End Sub

The Long_Sentences_Plus sub performs three checks. It searches for misuse of

“not only…but also”, misuse of “neither…nor”, and sentences that are too long. If “not
only” is used in a sentence, it must be followed by “but also” in that sentence or a
comment will be added stating, “If ‘but also’ is used it must be preceded by ‘...not
only…’.” Consider deleting 'also' or revising sentence.” If “neither” is used in a sentence,
it must be followed by “nor” in that sentence or a comment will be added stating, “If
‘neither’ is used it must be paired with ‘nor’”. If a sentence contains more than a set
number of words, the sentence will be highlighted and a comment generated. Presently
the maximum number of words allowed in a sentence is set to 35, but this value is easily
changed using the rules manager. For sentences with more than the set number of words,
a comment is added stating, “This sentence appears to contain more than ## words. Long
sentences with too much content tend to ramble and tire the reader." The code for the
Long_Sentences_Plus sub is listed below.

Sub Long_Sentences_Plus() ' Check for not only...but also,
neither...nor, long sentences
 Dim MyRange As Range, NumSent As Long
 Set MyRange = Selection.Range
 MyRange.WholeStory
 Dim DyLog As Dialog, SentRange As Range
 Set DyLog = Dialogs(wdDialogToolsWordCount)
 Dim SelSentRange As Range
 Selection.WholeStory

 NumSent = MyRange.Sentences.Count
 ActiveDocument.UndoClear
 For Eye = 1 To NumSent ' number of sentences in document
 ActiveDocument.Sentences(Eye).Select
 If Selection.Find.Execute(FindText:="but also",
 Forward:=True,
 Format:=False, Wrap:=wdFindStop) = True Then
 ActiveDocument.Sentences(Eye).Select
 If Selection.Find.Execute(FindText:="not only",
 Forward:=True, Format:=False, Wrap:=wdFindStop) =
 False Then
 ActiveDocument.Sentences(Eye).Select
 If Selection.Find.Execute(FindText:="but also",
 Forward:=True, Format:=False, Wrap:=wdFindStop) =
 True Then
 Selection.Comments.Add
 Range:=Selection.Range,
 Text:=Array_Misc(18) ' not only...but also
 message
 End If
 End If
 End If
 ActiveDocument.Sentences(Eye).Select
 If Selection.Find.Execute(FindText:="neither",
 Forward:=True,
 Format:=False, Wrap:=wdFindStop) = True Then
 ActiveDocument.Sentences(Eye).Select
 If Selection.Find.Execute(FindText:="nor ",
 Forward:=True,
 Format:=False, Wrap:=wdFindStop) = False Then
 ActiveDocument.Sentences(Eye).Select
 If Selection.Find.Execute(FindText:="neither",
 Forward:=True, Format:=False, Wrap:=wdFindStop) =
 True Then
 Selection.Comments.Add
 Range:=Selection.Range,
 Text:=Array_Misc(19) ' neither...nor message
 End If
 End If
 End If
 ActiveDocument.Sentences(Eye).Select
 DyLog.Execute
 WordCnt = DyLog.Words
 If Array_Misc(3) = "True" Then
 If WordCnt > Val(Array_Misc(4)) And WordCnt < 300
 Then 'check for long sentences
 On Error GoTo Errormanager
 If Len(Selection.Range) > 30 Then
 ActiveDocument.Comments.Add
 Range:=Selection.Range,
 Text:="This sentence appears to contain more
 than " & WordCnt & " words. Long sentences with

 too much content tend to ramble and tire the
 reader."
 End If
 End If
Errormanager:
 Next
 ActiveDocument.UndoClear
End Sub

The Comment_Words sub searches for inappropriate words, repeated words, or

words not listed in Microsoft Word’s dictionary, which includes concerns previously
detected by the Words_Grammar_Check sub. For each discovery, the comment “Word
inappropriate, repeated, or not listed in dictionary” is generated. The comment purposely
avoids the word “misspelled” as author’s names, medical terms, new expressions, or
acronyms are frequently not found in Word’s dictionary. If 200 of these concerns are
commented, the routine would exit and this message is added to the summary report,
“The scanner identifies up to 200 comments that identify words as inappropriate,
repeated, or not listed in dictionary.” The code for the Comment_Words sub is listed
below.

Sub Comment_Words() 'Comment words that are inappropriate,
repeated, or not listed in dictionary
 If Array_Misc(12) = "True" Then
 BadSpellingWords = ""
 Dim MisWord As Range, WordCnt As Integer
 For Each MisWord In ActiveDocument.SpellingErrors
 ActiveDocument.UndoClear
 WordCnt = WordCnt + 1
 MisWord.Select
 MisWord.Comments.Add Range:=MisWord,
 Text:=Array_Misc(13)
 If WordCnt > 199 Then
 BadSpellingWords = "The scanner identifies up to
 200 comments that identify words as
 inappropriate, repeated, or not listed in
 dictionary."
 Exit For
 End If
 Next
 End If
End Sub

The Passive_Voice sub searches for the use of passive voice. When found, the

text is highlighted and a simple hard-coded comment, “Use of passive voice”, is added.
In the Summary Report, a more detailed comment is added, “The use of passive voice
was commented. Although the use of passive voice is not a grammar error, it is a stylistic
issue that can weaken the clarity of writing. Although most reviewers prefer the active
voice, the use of passive voice may be appropriate in some situations. A passive
construction occurs when you make the object of an action into the subject of a
sentence”. Searching for passive voice can be set as active or inactive and the comment

can be edited using the rules manager. The code for the Passive_Voice sub is listed
below.

Sub Passive_Voice() ' Check for passive voice
 If Array_Misc(10) = "True" Then
 Dim Eye As Integer, Jay As Integer, MyText As String, Pos
 As Long
 Dim NextWord As String, MyPos As Integer, MyRange As
 Range, ComLen As Integer
 Dim Word1 As String, Word2 As String
 Selection.WholeStory
 Pos = Selection.End
 PassiveVoice = False
 PVCnt = 0
 On Error Resume Next
 For Eye = 0 To 22
 ActiveDocument.UndoClear
 Selection.Find.ClearFormatting
 With Selection.Find
 .ClearFormatting
 .Text = Array_Passive(Eye)
 .Replacement.Text = ""
 .Forward = True
 .Wrap = wdFindContinue
 .Format = False
 .MatchCase = False ' when searching - search is
 not case-sensitive
 .MatchWholeWord = False
 .MatchWildcards = False
 .MatchSoundsLike = False
 .MatchAllWordForms = False
 End With
 Selection.WholeStory
 Do While
 Selection.Find.Execute(FindText:=Array_Passive(Eye),
 Forward:=True, Format:=False, Wrap:=wdFindStop) =
 True
 If Pos < Selection.End + 20 Then Exit Do
 NextText = ActiveDocument.Range(Selection.End,
 Selection.End + 20).Text
 Word1 = ActiveDocument.Range(Selection.End,
 Selection.End + 2).Text
 Word2 = ActiveDocument.Range(Selection.End,
 Selection.End + 4).Text
 If Word1 <> "a " Then
 If Word2 <> "the " And Word2 <> "one " And
 Word2 <> "red " Then
 For Jay = 23 To 60
 If Array_Passive(Jay) <> "" Then
 MyPos = InStr(1, NextText,
 Array_Passive(Jay))
 If MyPos > 0 Then

 ComLen = MyPos +
 Len(Array_Passive(Jay)) - 1
 If Jay > 33 Then MyPos =
 Len(Array_Passive(Jay))
 Set MyRange =
 ActiveDocument.Range
 (Selection.Start +1,
 Selection.End + ComLen)
 Selection.Comments.Add MyRange,
 Text:="Use of passive voice" '
 Text:=Array_Misc(11)
 PVCnt = PVCnt + 1
 If PVCnt > 199 Then Exit Sub
 PassiveVoice = True
 End If
 End If
 Next Jay
 End If
 End If
 Loop
Errormanager:
 Next Eye
 End If
End Sub

The Summary_Report sub creates a summary report that represents the first

comment at the top of the document. The first entry reveals the total number of comments
in the document. If the detection of passive voice is active and the use of passive voice
was detected in the document, a message addressing the use of passive voice is included.
If any overused words were detected, they are included in the report stating how many
times they appeared in the document.

Document statistics are provided that include the Flesch and Flesch-Kincaid

Readability and Grade Level scores. The Flesch–Kincaid readability tests were developed
under contract to the US Navy in 1975, which established it as a standard that has gained
wide acceptance (The Flesch). The algorithms utilize total number of words, sentences,
and syllables to determine scores. Interestingly, the value used for total syllables is
derived from vowel counts and word lengths. If Unicode characters are detected during
the readability scan, statistical calculations are abandoned and the text, “Statistics were
not included as Unicode characters embedded in this document were interpreted as a non-
English language.”

The summary report concludes by stating, “Writers should not assume that all

errors are commented.” Below is the summary report from the test document.

The code for the Summary_Report sub is listed below.

Sub Summary_Report() ' Generate Summary Report
 Dim StrTotCnt As String, MyErrCnt As Integer, StatText As
 String, Eye As Integer, OneRpt As Integer
 OneRpt = 0
 Application.ScreenUpdating = False
 MyErrCnt = ActiveDocument.Comments.Count + 1 ' Count comments
 RptText = "Summary Report:" & vbCr ' Start Building RptText
 If MyErrCnt > 0 Then RptText = RptText & vbCr & MyErrCnt & "
 concerns are commented" & vbCr
 StrTotCnt = FormatNumber(TotWordCnt, 0, , , vbUseDefault)
 If BadSpellingWords <> "" Then RptText = RptText & vbCrLf &
 BadSpellingWords & vbCrLf ' Words inappropriate, repeated, or
 not listed in dictionary
 If PVCnt > 0 Then RptText = RptText & vbCrLf & Array_Misc(11)
 & vbCrLf
 If PVCnt > 199 Then

 RptText = RptText & vbCr & "Identifying Passive Voice
 stopped at 200 comments."
 End If
 PVCnt = 0
 Dim rs As Variant ' Readability Statistics
 On Error GoTo Errormanager
 StatText = " Readability Statistics:" & vbCr
 For Each rs In Documents(1).ReadabilityStatistics
 If rs <> "Passive Sentences" Then
 If rs <> "Words" Then ' rs.value is wrong for number
 of words
 StatText = StatText & rs.Name & " - " & rs.Value
 & vbCr
 Else
 StatText = StatText & rs.Name & " - " & StrTotCnt
 & vbCr
 End If
 End If
 Next rs
Errormanager:
 If Err.Number = 4658 Then 'Unicode characters detected in
 document
 StatText = vbCr & "Statistics were not included as
 Unicode characters embedded in document were interpreted
 as a non-English language."
 End If
 If OneRpt = 0 Then ' Work-around the on error goto problem
 If OverUsedText > " " Then OverUsedText = vbCr &
 OverUsedText
 RptText = RptText & OverUsedText & vbCr & StatText & vbCr
 & Array_Misc(1) ' summary comment text
 OneRpt = 1
 End If
 ' Display summary comment
 Selection.GoTo what:=wdGoToLine, which:=wdGoToAbsolute,
 Count:=1
 If Err.Number = 4605 Then Selection.GoTo what:=wdGoToPage,
 which:=wdGoToRelative, Count:=1 ' page down if graphics are
 at top of first page
 Selection.Comments.Add Range:=Selection.Range, Text:=RptText
 Selection.GoTo what:=wdGoToLine, which:=wdGoToAbsolute,
 Count:=1
 Selection.Text = Array_Misc(0) & vbCr & vbCr
 Selection.Font.Color = wdColorBlack
 Selection.Font.Size = 12
 Selection.Font.Bold = False
 With Selection
 For Eye = 1 To ActiveDocument.Comments.Count
 ActiveDocument.Comments(Eye).Author = Array_Misc(2) '
 Place initials in comments
 Next Eye
 End With
 Options.DefaultHighlightColorIndex = wdYellow

 Selection.Range.HighlightColorIndex = wdYellow
 Selection.GoTo what:=wdGoToLine, which:=wdGoToAbsolute,
 Count:=1
 Application.ScreenUpdating = True
End Sub

There were 29 errors discovered in the test document using the Edit Assist tool.

As an experiment, the test document was uploaded to four online grammar check sites.
The http://www.grammarcheckforsentence.com/ site identified 15 errors in the document,
but only 7 were valid. The http://sentencechecker.com/ site identified 5 concerns, but
only 3 were valid. The http://www.polishmywriting.com/ site found 19 concerns, but
only 6 were valid. The www.paperrater.com site reported 3 possible misspelled words
and 2 suggestions. The first suggestion was to use “phone” for “phones” and the second
suggestion was to insert a comma between “phone” and “dialed”. Both of these
suggestions were incorrect.

Edit Assist continues to evolve as new rules are added. One feature that has been

considered would be to evaluate references and in-text citations for APA style. A
significant enhancement would be to add an artificial intelligence element that could
analyze a research paper’s content and insert meaningful comments concerning the
paper’s sequencing of ideas through well-developed paragraphs, thoughtful supporting
detail in well-structured sentences, and smooth transitions that enhance the paper’s
organization. The development of this element is beyond the scope of the author’s effort.

Conclusion

Several faculty have found value in Edit Assist for more than ten years to reduce

the drudgery in commenting common (and repetitive) writing issues. When used as a tool
to provide feedback concerning writing issues, faculty reported that papers submitted for
feedback usually scored about 30 points higher on final submissions, but statistics were
not available to validate this claim. As a result of this development and a trial use of the
tool by selected faculty, Edit Assist is now available to faculty in the College of Business,
Engineering, and Technology at Texas A&M University – Texarkana. In addition, a
student version offering ribbon buttons for “Scan Document” and “Delete Comments”
has been placed throughout the campus for open use. There is an opportunity for a study
to validate the effectiveness of this tool not only concerning improved grades, but
improved writing skills in formal business writing.

References

Anderson, Tim. “You Lucky Devs: It’s Microsoft Office 2016…and VBA Lives on.” The

Register, 1 Oct. 2015, http://www.theregister.co.uk/2015/10/01/.

Liu, Rios, Heilman, Gerard, & Linn. “Validation of Automated Scoring of Science

Assessments.” Journal of Research in Science Teaching, vol. 53, no. 2, 2016.

McDonald, Charles & McDonald, Theresa. “A Technology-Based Solution to Reduce
Time Spent Identifying and Commenting Writing Errors in Research Papers.”
ACET Journal of Computer Education and Research, vol. 6, no. 1, 2010.

“The Flesch Grade Level Readability Formula.” 31 Oct. 2016. ReadabilityFormulas.com.

http://www.readabilityformulas.com/flesch-reading-ease-readability-formula.php.

